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The difference between ‘placebo 
group’ and ‘placebo control’: a case 
study in psychedelic microdosing
Balázs Szigeti 1*, David Nutt 1, Robin Carhart‑Harris 2 & David Erritzoe 1

In medical trials, ‘blinding’ ensures the equal distribution of expectancy effects between treatment 
arms in theory; however, blinding often fails in practice. We use computational modelling to show 
how weak blinding, combined with positive treatment expectancy, can lead to an uneven distribution 
of expectancy effects. We call this ‘activated expectancy bias’ (AEB) and show that AEB can inflate 
estimates of treatment effects and create false positive findings. To counteract AEB, we introduce 
the Correct Guess Rate Curve (CGRC), a statistical tool that can estimate the outcome of a perfectly 
blinded trial based on data from an imperfectly blinded trial. To demonstrate the impact of AEB and 
the utility of the CGRC on empirical data, we re-analyzed the ‘self-blinding psychedelic microdose trial’ 
dataset. Results suggest that observed placebo-microdose differences are susceptible to AEB and are 
at risk of being false positive findings, hence, we argue that microdosing can be understood as active 
placebo. These results highlight the important difference between ‘trials with a placebo-control group’, 
i.e., when a placebo control group is formally present, and ‘placebo-controlled trials’, where patients 
are genuinely blind. We also present a new blinding integrity assessment tool that is compatible with 
CGRC and recommend its adoption.

In medical research the gold standard experimental design is the blinded randomized controlled trial1, where 
‘blinding’ refers to the concealment of the intervention2. The purpose of blinding is to equally distribute expec-
tancy effects between treatment arms3, thus, to eliminate biases associated with expectancy. ‘Blinding integrity’ 
refers to how successfully blinding is maintained. Blinding integrity can be assessed by asking blinded parties, 
e.g., patients and/or doctors, to guess treatment allocation. If the correct guess rate (CGR) is higher than chance, 
then, blinding is ineffective. Assessing blinding integrity could be especially important when outcomes are sub-
jective, for example in pain and psychiatric research, where there is a high susceptibility to expectation biases4. 
In these domains, only 2–7% of trials report blinding integrity and when blinding is assessed, it is found to be 
ineffective for about 50% of the trials5–9.

Poor reporting of blinding integrity may be explained by at least three factors. First, there is no accepted 
standard for how to assess blinding integrity. Most commonly, patients are asked to guess their treatment after 
the trial has concluded, but such data may be subject to recall and other biases10–12. Secondly, there is no accepted 
standard for how to incorporate blinding integrity into data analysis. Even if blinding integrity is assessed, most 
scientific reports do not attempt to incorporate blinding integrity data into the interpretation of the results. 
Finally, others have speculated that a reluctance to assess blinding stems from a fear that weak blinding could 
cast doubt on positive trial outcomes5. Supporting this reasoning, lesser blinding integrity reporting has been 
associated with industry sponsorship6,9.

There is a resurgent interest in the medicinal potential of psychedelic drugs, such as LSD and psilocybin13. 
Recently, ‘microdosing’ has emerged as a new paradigm for psychedelic use. Microdosing does not have a 
universally accepted definition, but most microdosers take oral doses of 10–20 μg LSD or 0.1–0.3 g of dried 
psilocybin containing mushrooms, 1–4 times a week14. Anecdotal claims have been made that microdosing 
improves well-being and cognition15,16. Observational studies have generally confirmed the positive anecdotal 
claims17–20, but so far placebo-controlled studies have failed to find robust evidence for larger than placebo 
efficacy in healthy samples21–25.

We recently conducted a ‘self-blinding citizen science trial’ on microdosing, where participants implemented 
their own placebo control based on online setup instructions without clinical supervision24. The strength of 
this design is twofold: it tested the effects of microdosing in a real-life context, increasing the trial’s external 
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validity26, and it allowed us to obtain a large sample size while implementing placebo control at minimal logistic 
and economic costs. The study was completed by 191 participants, making it the largest placebo-controlled trial 
on psychedelic microdosing for a fraction of the cost of even a small traditional clinical trial.

Methods
Activated expectancy bias (AEB) model.  We introduce a theoretically motivated computational model 
of AEB, the model’s structure and equations are shown on Fig. 1, the key model features are:

•	 The presence or lack of side effects allow patients to infer their treatment at a higher than chance rate. 
The correct guess probability, pCG , in the model is 0.7, which is consistent with both microdosing21,24 and 
antidepressants27–29 trials.

•	 AEB model parameters are calibrated such that the treatment effect is 3 points, corresponding to a small-
moderate effect size of 0.4 standardized mean difference, which is consistent with microdosing21,22,24 and 
antidepressant trials30, numeric parameters can be found in Supplementary Table 1.

•	 Patients have higher efficacy expectations for the active treatment than for placebo treatment, this positive 
expectancy bias is represented by the NAEB term in the model, see Fig. 1.

The AEB model was used to generate pseudo-experimental data with 2*2 = 4 parameter configurations, cor-
responding to direct treatment effect and activated expectancy bias being either active or not, see Fig. 1. In our 
analysis the direct treatment effect (blue)/activated expectancy bias (red) pathways are turned off by setting the 
mean NDTE/NAEB equal to 0. For each configuration, 500 trials were simulated, each with 230 patients, mimicking 
the sample size of the microdose trial analyzed.

Self‑blinding microdose trial.  The self-blinding microdose trial used an ’self-blinding’ citizen science 
approach, where participants implemented their own placebo control based on online setup instructions with-
out clinical supervision24. Self-blinding involved enclosing the microdoses inside non-transparent gel capsules 
and using empty capsules as placebos. Then, these capsules were labeled with QR codes that allowed investiga-
tors to track when placebo/microdose was taken without sharing this information with participants. Participants 
were followed throughout a 4-week dosing period, taking 2 microdoses/week in the active group. For each cap-
sule taken, participants made a binary guess whether their capsule was placebo or microdose, see Supplementary 
materials for details.

Here, the trial’s acute and post-acute outcomes are re-analyzed. Acute measures were completed 2–6 h after 
ingestion of the capsule, while post-acute measures were taken the day after a capsule was taken. Acute outcomes 
were: positive and negative affect schedule (PANAS)31, cognitive performance score (CPS) and visual analogue 

Figure 1.   The activated expectancy bias (AEB) model, consisting of 3 binary nodes (TRT, PT and TE) and a 
continuous value node, the outcome (OUT). In the equations, BX/NX stand for a random Bernoulli/normal 
variable, respectively. The binary nodes (TRT, PT and TE) represent Bernoulli variables (BTRT​, BPT, BTE), 
where the values of 0/1 correspond to placebo/active. To generate AEB model data, first Treatment (TRT) is 
determined by Eq. 1 and then the Perceived treatment (PT) by Eq. 2, where pCG is the probability of correct 
guess, i.e. the correct guess rate, and then Treatment expectancy is fixed according to Eq. 3. Finally, the outcome 
score is calculated by Eq. 4 which has components of natural history ( NNH ), direct treatment effect ( NDTE ) and 
activated expectancy bias ( NAEB ), see Supplementary table 1 for the numeric value of all parameters.
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scale items for mood, energy, creativity, focus, and temper. The CPS is an aggregated quantification of cognitive 
performance based on 6 computerized tasks (spatial span, odd one out, mental rotations, spatial planning, feature 
match, paired associates). Post-acute outcomes were: Warwick–Edinburgh mental well-being scale (WEMWB)32, 
quick inventory of depressive symptomatology (QIDS)33, state-trait anxiety inventory (STAIT)34 and social con-
nectedness scale (SCS)35. To simplify the current analysis, we only used data from the first week of the experiment, 
thus, each datapoint is independent and not confounded by order effects. This approach reduced the overall 
sample, but yielded almost identical qualitative conclusion as the full dataset. In the current analysis n = 233 
datapoints were included.

The trial only engaged people who planned to microdose through their own initiative, but who consented 
to incorporate placebo control to their self-experimentation. The trial team did not endorse microdosing or 
psychedelic use and no financial compensation was offered to participants. The study was approved by Impe-
rial College Research Ethics Committee and the Joint Research Compliance Office at Imperial College London 
(reference number 18IC4518). Informed consent was obtained from all subjects, the trial was carried out in 
accordance with relevant guidelines and regulations.

Estimate of treatment effects.  Throughout this work treatment effects are estimated by an out-
come ~ treatment linear model, where outcome is a numeric, treatment is a binary variable (placebo or active 
treatment). In this manuscript ‘non-CGR adjusted analysis’ means that this model is fitted to empirical data, 
while ‘CGR adjusted analysis’ means that this model is fitted to the CGR adjusted pseudo-experimental data, 
see Correct guess rate curve section for details. Therefore, the CGR-adjusted treatment estimate/p-value is to the 
estimate/p-value associated with the treatment term in the model above, applied to data adjusted by the CGRC 
method. All linear models were implemented using the lme package (version 3.1–155) in R (v4.0.2).

Correct guess rate curve.  We developed CGR adjustment, a novel statistical technique that can estimate 
the outcome of a perfectly blinded trial, based on data from an imperfectly blinded trial. Briefly, first the scores 
are separated into four strata corresponding to all four possible combinations of treatment and guess. Next, sta-
tistical models of these four strata are built using kernel density estimation (KDE). KDE estimates were imple-
mented by the scikit-learn package (v1.0.2) in python (v3.7), all parameters were left at default value. Then, ran-
dom samples are drawn from each strata, such that the combined sample has CGR = 0.5, mimicking a perfectly 
blinded trial, see Fig. 2 for a detailed explanation. Treatment estimates for other CGR values can be obtained in a 
similar manner by changing the number of samples drawn from each KDE. For example, a trial with CGR = 0.6 
can be approximated by drawing 0.6*n random samples from the correct guess KDEs and 0.4*n random samples 
from the incorrect guess KDEs, etc.

Results
Correct guess rate (CGR) adjustment of the activated expectancy bias (AEB) model.  We ana-
lyze pseudo-experimental data generated by the 2*2 = 4 configurations of the AEB model (corresponding to 
direct treatment effect and activated expectancy bias either being active or not, see Fig. 1) with both traditional, 
i.e. non-CGR adjusted, and CGR-adjusted analysis. To demonstrate that the qualitative conclusions presented 
here do not require fine tuning of parameters, we present a robustness analysis in the Supplementary Materials.

First, the case was analyzed where neither direct treatment effect nor the activated expectancy bias pathways 
are activated (top row in Table 1). In this case, the outcome is a normal random variable. The treatment p-value 
was significant for 5%/6% of the simulated trials using the traditional/CGR adjusted models, which is expected 
based on the 0.05 significance level.

Next, the case was analyzed where a direct treatment effect was active, but activated expectancy bias was not 
active (second row from top in Table 1). Non-CGR adjusted and CGR adjusted analysis identifies a significant 
treatment effect in 86/84% of the simulations with an average p-value of 0.032/0.036, respectively. We note that 
this 14%/16% false negative rate is due to the small effect used in simulations (~0.4 Hedges’ g), larger effects 
decrease the false negative rate of both analyses, see robustness analysis in Supplementary materials. In both 
analysis the treatment estimate is within 5% of the true effect.

Next, the case was analyzed where a direct treatment effect was inactive, but activated expectancy bias was 
active (third row from top in Table 1), i.e. a scenario where there is no true treatment effect and activated expec-
tancy is a complete mediator of the treatment. For the traditional models, 78% of the simulated trials resulted in 
a false positive treatment effect. For the CGR-adjusted models, only 3% of the simulated trials produced a false 
positive treatment effect.

Finally, the case was analyzed where both a direct treatment effect and activated expectancy bias were active 
(bottom row in Table 1), i.e., a case where AEB is a partial mediator of treatment. The average treatment p-value 
was 0.001/0.041 with 99%/82% of the trials resulting a significant treatment effect for the traditional/CGR 
adjusted analysis, respectively. Note that the CGR adjusted analysis can only be as good to detect a treatment 
effect as the unadjusted analysis when only DTE is active (as the adjustment aims to remove the effect of AEB). 
Thus, CGR adjusted analysis detects an effect in just 4% less of the simulations (86% vs. 82%) than this best-
case scenario, i.e. CGR adjustment only adds 4% to the false negative rate. Furthermore, the traditional analysis 
estimated the effect to be 5.69 points, while the CGR adjusted estimate was 3.04 points (the true treatment effect 
was 3), so traditional analysis significantly overestimated the effect due to the influence of AEB. In summary, the 
CGR adjusted analysis’ false negative rate is ~2-4% higher than the traditional analysis’ (rows 2&4 in Table 2), 
but the false positive rate is ~75% lower when AEB is present (row1&3 in Table 2). Furthermore, when a true 
effect is present, CGR provides a more reliable estimate of the effect size (row 4 in Table 2) as it subtracts the 
influence of AEB.
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Figure 2.   Correct guess rate (CGR) adjustment to estimate the outcome of a perfectly blinded trial based on data from an imperfectly 
blinded trial. First, scores (purple histogram at top) are separated into four strata corresponding to all possible combinations of 
treatment and guess. Both treatment and guess are binary with potential values of placebo/active, thus, the four strata are (using the 
treatment/guess notation): PL/PL, AC/PL, PL/AC and AC/AC. Next, statistical models of these strata are built using kernel density 
estimation (KDE). Note that two strata correspond to correct guesses (PL/PL and AC/AC; red) and two to incorrect guesses (AC/
PL, PL/AC; blue). Next, n/2 random samples are drawn from the correct guess KDEs, such that the relative sample sizes of the 
correct guess strata are preserved, i.e. the ratio nPL/PL/nAC/AC is same as in the original data, see Supplementary materials for a numeric 
example. Similarly, n/2 random samples are drawn from the incorrect guess KDEs, such that the ratio nAC/PL/nPL/AC is same as in 
the original data. These random samples are then combined, resulting in a pseudo-experimental dataset with CGR = 0.5 (purple 
distribution at bottom), corresponding to effective blinding. The random sampling from KDEs is repeated 100 times, for each CGR-
adjusted pseudo-experimental dataset is analyzed to estimate the direct treatment effect, see Estimate of treatment effects. The ‘CGR 
adjusted treatment effect/p-value’ is the mean treatment estimate / p-value across these 100 samples. Estimates at other CGR values can 
be obtained similarly, e.g. a trial with CGR = 0.6 can be approximated by drawing 0.6*n random samples from the correct guess KDEs 
and 0.4*n random samples from the incorrect guess KDEs, etc.
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Correct guess rate (CGR) adjusted analysis of the self‑blinding microdose trial.  Next, we 
advance from analyzing pseudo-experimental data to scrutinizing empirical data from the self-blinding micro-
dose trial24. Using traditional, i.e. non-CGR adjusted, data analysis, statistically significant placebo-microdose 
differences were observed on the following scales: acute emotional state (PANAS; mean difference ± SE = 3.2 ± 1.3; 
p = 0.01**), energy visual analogue scale VAS (11.5 ± 2.7; p < 0.001***), mood VAS (6.4 ± 2.7; p = 0.02*), creativity 
VAS (6.4 ± 2.5; p = 0.01*) and post-acute depression (QIDS; − 1.2 ± 0.06; p = 0.04*).

After CGR adjustment, none of these outcomes remained significant with the exception of the energy VAS 
that remained significant (p ~ 0.04), but with a ~ 40% reduced effect size.

This finding suggests that microdosing increases self-perceived energy beyond what is explainable by expec-
tancy effects, although the magnitude of the remaining effect is small (Hedges’ g = 0.34). Equivalence testing for 
all outcomes where significance changed after CGR adjustment (i.e. PANAS, QIDS, mood and creativity VASs) 
with an equivalence bound equal to the average within-subject variability were significant, arguing that outcomes 
were equivalent in the placebo and microdose groups after the CGR adjustment, see Supplementary materials 
for details. See Table 2 for numeric results and Fig. 4 for the CGR curves of selected outcomes.

Treatment guess questionnaire.  In the supplementary materials we included a brief, 5-items question-
naire developed to collect treatment guess and source of unblinding data. The resulting data is compatible with 
the current and planned future versions of the CGR curve.

Discussion
Effective blinding distributes expectancy effects equally between treatment arms3. However, if blinding is inef-
fective, i.e. patients can deduce their treatment allocation, and if patients have a positive expectancy bias for the 
active arm, then expectancy effects will be no longer equally distributed and trial outcomes will be biased towards 
the active arm. We call this bias ‘activated expectancy bias’ (AEB), which can be viewed as a residual expectancy 
bias potentially present even in ‘blinded’ trials. A key consequence is that the research community needs to 
distinguish between trials with a placebo-control group, i.e., when a placebo control group is formally present 
in the trial, and placebo-controlled trials, where patients are genuinely blinded and thus AEB is not present. In 
other words, a placebo control group is necessary, but in-itself insufficient to control for expectancy effects. For 
example, a recent trial on LSD therapy includes ‘double-blind, placebo-controlled’ in its title, but as the manuscript 
describes "only one patient in the LSD-first group mistook LSD as placebo” (out of 18 patients), highlighting that 
the trial was formally blinded, but not in practice36. The implication is that ‘placebo-controlled’ studies are more 
fallible than conventionally assumed with consequences for evidence-based medicine.

Current FDA drug approval only requires two trials with statistically significant drug-placebo difference37, 
thus, the self-blinding microdose trial yielded evidence consistent with FDA approval, despite that the findings 
were likely false positives, driven by AEB. In our view, placebo-controlled trials should only be considered ‘gold 
standard’ if blinding integrity is demonstrated with empirical data. This requirement would create a new, more 
rigorous standard for what is ‘placebo control’. Given the high costs and low success rate of psychiatric trials38, 
there may be little appetite from industry and regulators to create such new standard, but it should be embraced 
by the scientific community.

We note that it is difficult to estimate how prevalent AEB is in medical trials, because blinding integrity has 
only been reported in 2–7% of trials5,6,9. To understand the prevalence of AEB, more trials need to capture blind-
ing integrity data39. To aid this practice, in the supplementary materials we suggest a brief 5-items questionnaire 
that is compatible with the method presented here and recommend its adoption.

When the self-blinding microdose trial was analyzed traditionally, small, but significant microdose-placebo 
differences were observed on emotional state, depression, mood, energy and creativity, favoring microdosing24. 
After CGR adjustment, only energy VAS remained significant (p ~ 0.04) with a ~ 40% reduced effect size—we note 
that another recent trial similarly found significant increases in self-perceived energy beyond what is explainable 
by the placebo and expectancy effects40. One could argue that these negative results are false negatives; however, 

Table 1.   Comparative results of traditional and CGR adjusted analysis of the AEB model. The model is 
analyzed with 2*2 = 4 parameter configurations, corresponding to the direct treatment effect (DTE) and 
activated expectancy bias being active or not, see Fig. 1. Results are equivalent for the two analysis in the top 
two rows, however, when only the activated expectancy bias is active (3rd row from top), traditional analysis 
produces false positive findings for 78% of the simulations. Furthermore, when both direct treatment effect and 
activated expectancy bias are active (bottom row), traditional analysis overestimates the known true treatment 
effect (estimate is 5.69 points, while the true effect is 3 points), see Fig. 3 for the corresponding CGR curves.

Model 
configuration

Direct treatment 
effect (points)

Direct treatment 
effect (Hedges’ g)

Non-CGR adjusted models CGR adjusted models

Average 
treatment
p-value

Proportion with 
sig. treatment
p-value

Average 
treatment effect 
(points)

Average 
treatment
p-value

Proportion with 
sig. treatment
p-value

Average 
treatment effect 
(points)

DTE off, AEB off 0 0 0.503 0.05  0.0 0.332 0.06  0.02

DTE on, AEB off 3 0.4 0.032 0.86 3.02 0.036 0.84 3.01

DTE off, AEB on 0 0 0.052 0.78 2.91 0.381 0.03 0.01

DTE on, AEB on 3 0.4 0.001 0.99 5.69 0.041 0.82 3.04
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the consistency of the negative results across measures argues against this possibility. Furthermore, the trial had 
the necessary features for AEB, i.e. weak blinding and a positively biased24, implying that the trial is susceptible 
to AEB. AEB is likely to be present in other psychedelic microdose trials as well, results should be interpreted 
with caution, especially if evidence for effective blinding is not presented.

We hypothesize that the reported benefits psychedelic microdosing on mood and creativity can be understood 
as an ‘active placebo’, i.e., an intervention without medical benefits, but with perceivable effects36,39,40, emphasizing 
the difference between effects and benefits. A recent comprehensive review of microdosing concluded that: “These 
findings together provide clear evidence of psychopharmacological effects. That is, microdosing is doing something. A 
key question for researchers is whether the effects of microdosing have clinical or optimization benefits beyond what 
might be explained by placebo or expectation.”41. In short, microdosing leads to perceivable effects, for example by 
the heightened energy levels, explaining why CGR is universally high across trials21,24,40, but at this point none 
of these effects seem to be related improved mental health. If our hypothesis is correct, then, either improved 
blinding or a sample without positive expectancy would nullify the observed benefits of microdosing by nullify-
ing AEB. An alternative possibility is that microdosing is only effective at doses where blinding integrity cannot 
be maintained due to conspicuous subjective effects, such as in the case of psychedelic macrodosing42. In this 

Figure 3.   Correct guess rate (CGR) curves of the activated expectancy bias (AEB) model. Each panel shows the 
estimated treatment p-value (blue; scale shown on left y-axis) and effect size (red; scale shown on right y-axis), 
with their corresponding confidence interval, as a function of CGR. Horizontal purple dashed line represents 
the p = .05 significance threshold, vertical green dashed line corresponds to the simulated trial’s original CGR, 
while the black dashed line corresponds to a perfectly blinded trial (CGR = 0.5). The model was analyzed with 
2*2 = 4 configurations of parameters, corresponding to the possibilities of the direct treatment effect (DTE) and 
activated expectancy bias (AEB) either being active or inactive, see Fig. 1. For the DTE off; AEB on case (bottom 
left) generates a false positive finding when CGR is not considered during analysis (green dashed line intersects 
p-value estimate below 0.05), but CGR adjustment recovers the lack of treatment effect (black dashed line 
intersects p-value estimate above 0.05). For the DTE on; AEB on case (bottom right), both analyses correctly 
identify that there is a treatment effect; however, non-CGR adjusted analysis overestimates the effect size 
by ~ 40%, see Table 1 for numeric results.
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scenario the possibility of effective placebo control is abandoned and efficacy beyond expectancy needs to be 
established outside of blinded trials. Arguments for the merit of alternative trial designs to assess the efficacy of 
psychedelics have been made before43, for example mechanistic studies could also help to establish the causal 
effect of treatment. Recently, arguments against the value of placebo control have been raised in psychedelic 
trials44. This article remains neutral on this issue, it merely insists that if a trial is called ‘placebo controlled’, then 
it should really control for the placebo effect and not just have a ‘placebo group’.

Our arguments above assume that the high CGR is explained by malicious unblinding, i.e. positive treatment 
expectancy drives the positive outcomes, rather than benign unblinding, i.e. patients correctly guess their treat-
ment due to noticeable health improvements45. If unblinding is benign, then CGR adjustment could lead to false 
negative findings due to collider bias46 (currently Fig. 1 represents malicious unblinding, for benign unblinding 
PT → TE → OUT would need to be replaced with OUT → PT). Accordingly, investigators need to carefully assess 
the source of unblinding prior to using our method. To facilitate this assessment, our questionnaire in the sup-
plementary materials captures this source of unblinding information.

What was the source of unblinding in the self-blinding psychedelic microdose trial? Two lines of evidence 
point towards that it was the perceptual/side effects rather than efficacy, corresponding to malicious unblinding. 
First, 55% reported that the primary cue to formulate their treatment guess was ‘body/perceptual sensations’, such 
as muscle tension (58%) and stomach discomfort (27%), in contrast only 23% reported ‘mental/psychological ben-
efits’. Secondly, among participants who were assessed under both placebo and microdose conditions, the mean 
placebo-microdose difference on the positive / negative affect subdomains of the PANAS was 2.1/0.8. In a recent 
study without any intervention, the mean temporal intra-individual difference, i.e. the within-subject day-to-day 
variability, of the same subdomains was ~ 10/~ 647. Thus, the natural within-subject variability is ~ 500–750% 
larger than the mean placebo-microdose difference, arguing that the effect is too small to be noticeable.

Limitations.  CGR adjustment relies on binary treatment guess data from patients, however, treatment belief 
is a complex construct that cannot be reduced to a single binary variable. We focused on binary guess data due 
to its availability and note that even this imperfect data is rare to find. Treatment guess could be better charac-
terized if guess confidence was also rated. Such confidence data would allow to distinguish between those who 
truly identified their drug condition (high confidence guess) versus those who guess correctly by chance (low 
confidence guess).

In our analysis, we treat the source of unblinding as a binary variable, either being only benign or malicious. A 
more realistic scenario is that for some patients, both efficacy and non-specific effects contribute to their guesses. 
Relatedly, our assessment on the source of unblinding is based on retrospective self-reports, that cannot provide 
conclusive evidence on causation.

Our AEB model assumes linear addition of the direct treatment and the activated expectancy effects to esti-
mate the total effect, however, these effects may not be additive for all circumstances48.

The CGR curve relies on resampling the observed data, thus, the resulting data cannot be considered 
experimentally randomized, and as a consequence confounding variables may not be equally distributed. 
Despite the KDE approximation of each strata, practically some datapoints may appear multiple times in the 

Table 2.   Comparison of traditional (non-CGR adjusted) and CGR adjusted models of the self-blinding 
microdose trial data. Note that for all outcomes that were statistically significant in the traditional models 
became insignificant after CGR adjustment with the exception of the energy VAS. These results argue that 
positive outcomes in the traditional analysis could be false positive findings created by AEB. Energy VAS 
remained significant even after CGR adjustment, although the effect size is reduced by ~ 40%. This finding 
suggests that microdosing increases self-perceived energy beyond what is explainable by expectancy effects, 
although the remaining effect is small, see Fig. 4 for CGR curves of selected outcomes.

Outcome

Unadjusted models CGR adjusted models

Treatment p-value Treatment effect ± CI Hedge’s g Treatment p-value Treatment effect ± CI Hedge’s g

Emotional state (PANAS; 
acute) 0.01* 3.2 ± 2.6 0.32 0.43 1.1 ± 2.6 0.11

Mental well-being (WEM-
WBS; post-acute 0.25 1.2 ± 2.2 0.15 0.46 0.7 ± 2.2 0.08

Depression (QIDS; post-
acute 0.04* − 1.2 ± 1.1 − 0.27 0.10 − 1.1 ± 1.2 − 0.25

Anxiety (STAIT; post-acute) 0.29 − 1.6 ± 3.0 − 0.14 0.46 − 1.2 ± 3.0 − 0.1

Social connectedness (SCS; 
post-acute) 0.97 − 0.0 ± 1.8 0 0.48 − 0.4 ± 1.8 − 0.06

Cognitie performance (CPS; 
acute) 0.63 − 0.0 ± 0.2 − 0.03 0.52 0.0 ± 0.4 0.02

Energy VAS (acute)  < 0.001*** 11.5 ± 5.4 0.58 0.04* 6.8 ± 5.1 0.34

Mood VAS (acute) 0.02* 6.4 ± 5.3 0.31 0.42 2.7 ± 5.4 0.13

Creativity VAS (acute) 0.01** 6.4 ± 5 0.34 0.48 2.0 ± 5.0 0.11

Focus VAS (acute) 0.60 1.4 ± 5.2 0.07 0.45 − 1.5 ± 4.9 − 0.08

Temper VAS (acute) 0.93 0.2 ± 5.8 0.01 0.42 2.1 ± 5.8 0.1
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pseudo-experimental samples, potentially increasing the error rate due to dependent observations. The error 
rate of our methodology is a function of the sample characteristics, generally, the smaller the sample, the more 
extreme the CGR and the smaller the effects are, the less reliable the results will be. In a range of these parameters 
that mimics microdosing and antidepressant trials (n ~ 200, CGR ~ 0.7, treatment effect ~ 0.4 Hedges’ g), our 
method has comparable false negative rate as traditional, non-CGR adjusted analysis. However, when AEB is 
present CGR adjusted analysis has a much lower false positive rate and a more reliable estimate of the true effect 
size compared to non-CGR adjusted analysis. The error rate of our methodology can be higher in other contexts, 
in particular if the sample is small. Researchers wishing to use CGR adjustment should first run simulations to 
determine whether CGR produces acceptable error rates for the parameters of their data and the application 
in mind. For the limitations listed above, our CGR adjustment is inferior to results from a truly blind RCT, its 
value lies that it can provide an approximate answer when achieving ideal blinding is difficult or impossible.

Figure 4.   Correct guess rate (CGR) curves for self-blinding microdose trial outcomes. Each panel shows the 
estimated treatment p-value (blue; scale shown on left y-axis) and effect size (red; scale shown on right y-axis), 
with their corresponding confidence interval, as a function of CGR. Horizontal purple dashed line represents 
the p = .05 threshold, vertical green dashed line corresponds to the trial’s original CGR (= 0.72), while the black 
dashed line corresponds to a perfectly blinded trial (CGR = 0.5). Outcomes in the top row (Positive and Negative 
Affection Scale (PANAS) and Mood visual analogue scale) are significant according to unadjusted analysis (green 
dashed line intersects p-value estimate below 0.05), but become insignificant after CGR adjustment (black 
dashed line intersects p-value estimate above 0.05), arguing that these findings could be false positives driven by 
AEB. Energy VAS remains significant even after CGR adjustment, although the effect size is reduced by ~ 40%. 
This finding suggests that microdosing increases self-perceived energy beyond what is explainable by expectancy 
effects, although the remaining effect is small (Hedges’ g = .34). Finally, CGR adjustment has little impact on the 
cognitive performance score as both the p-value and the effect estimate remain close to a constant. This finding 
suggests that this measure is not affected by AEB, possibly because cognitive performance was not self-rated, 
rather measured by objective computerized tests, see Table 2 for numerical results.
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CGR adjustment can be viewed as an example of a resampling method to overcome the challenges of imbal-
anced data. Here we present only a particular solution to this problem and not a systematic exploration of how 
rebalancing of the data can be achieved.

Finally, our data on microdosing was obtained from a self-selected healthy sample. Microdosing may be 
effective for certain conditions in a clinical population, in domains we did not assess, if used at higher doses or 
longer time periods or when it is co-administered with a behavioral therapy, such as cognitive training.

Data availability
The data and software used here is available for scientific and research purposes at https://​github.​com/​szb37/​
Corre​ctGue​ssRat​eCurve. The repository contains a conda computational environment, the data analyzed and 
scripts to reproduce all figures and major statistical findings described here.
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