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Abstract

Objective: Can machine learning (ML) enable data‐driven discovery of how changes

in sentiment correlate with different psychoactive experiences? We investigate by

training models directly on text testimonials from a diverse 52‐drug pharmacopeia.
Methods: Using large language models (i.e. BERT) and 11,816 publicly‐available
testimonials, we predicted 28‐dimensions of sentiment across each narrative, and

then validated these predictions with adjudication by a clinical psychiatrist. BERT

was then fine‐tuned to predict biochemical and demographic information from

these narratives. Lastly, canonical correlation analysis linked the drugs' receptor

affinities with word usage, revealing 11 statistically‐significant latent receptor‐
experience factors, each mapped to a 3D cortical Atlas.

Results: These methods elucidate a neurobiologically‐informed, sequence‐sensitive
portrait of drug‐induced subjective experiences. The models' results converged,

revealing a pervasive distinction between the universal psychedelic heights of

feeling in contrast to the grim, mundane, and personal experiences of addiction and

mental illness. Notably, MDMA was linked to “Love”, DMT and 5‐MeO‐DMT to

“Mystical Experiences” and “Entities and Beings”, and other tryptamines to “Sur-

prise”, “Curiosity” and “Realization".

Conclusions: ML methods can create unified and robust quantifications of subjec-

tive experiences with many different psychoactive substances and timescales. The

representations learned are evocative and mutually confirmatory, indicating great

potential for ML in characterizing psychoactivity.
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1 | INTRODUCTION

Psychoactive molecules can engender an awesome breadth of

subject states—from inebriated to hallucinatory, mystical to numb

—with massive pharmaceutical and societal implications (Shul-

gin & Shulgin, 1991). Critically, however, researchers lack a unified

framework for quantifying how subjective drug effects unfold. The

instruments used to measure the subjective effects of psychoactive

drugs consist primarily of questionnaires (e.g. DEQ, 5D‐ASC, ARCI)
(Haertzen, 1966; Hasler et al., 2004; Kubany et al., 2000) or

symptom scales (e.g. HAMD, YBOCS) (Moritz et al., 2002; Williams

et al., 2008). The emergence of artificial neural networks alongside

growing datasets of drug testimonials provides an opportunity to

develop powerful new methods for quantifying psychoactivity.
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Eschewing methodological boundaries between psychiatric medi-

cations, substances of abuse, and hallucinogens, we pool together

qualitative data revealing patterns of drug induced experience

across drug classes. This exploratory, descriptive study presents an

AI‐informed, data‐driven perspective on how different drugs

associate with different sentiments and semantic tags as well as

the trajectories these associations follow over the course of

narrative testimonials.

Three distinct but related machine learning (ML) modeling

approaches are brought to bear on a corpus of 11,816 drug nar-

ratives from Erowid. Firstly, a large language model was trained on

publicly available, human‐annotated texts to predict 28‐dimensions
of sentiment which were then validated with adjudication by a

clinical psychiatrist. Secondly, a separate model was fine‐tuned to

predict biochemical and demographic information from these nar-

ratives, and then generalized to unseen data. Thirdly, canonical

correlation analysis (CCA) linked the drugs' receptor affinities with

word usage, revealing 11 statistically‐significant latent receptor‐
experience factors, each mapped to a 3D cortical Atlas.

Together, these three ML methods elucidate a neurobiologically‐
informed, sequence‐sensitive portrait of drug‐induced subjective

experiences.

Gross aspects like arousal and hedonic tone are conserved across

our species, while diverse subjective manifestations of psychiatric

illnesses, intensification of emotion during acute drug (Nichols, 2016)

experiences, and addiction require more nuanced, multi‐dimensional
classifications (Russell & Barrett, 1999). Recent advances in Natural

Language Processing (NLP) provide new means to quantify this

nuance by manually‐annotating taxonomies of emotion in large

corpora of text (Dang et al., 2020; Demszky et al., 2020; Maas

et al., 2011). Simultaneously, transformer‐based models have made

tremendous progress on many language tasks (Brown et al., 2020;

Devlin et al., 2018; Vaswani et al., 2017).

Feelings unfold over time. This temporal trajectory of sentiment

is the substrate in which significance is felt. Moreover, the form of a

sentiment's trajectory shapes the memory that is ultimately consol-

idated. For example, the “peak‐end rule” states that the intensities at
the peak and the end of an experience determine its imprint in

memory, while the notion of “primacy” holds that earlier events in a

sequence are remembered more clearly (Altmann, 2000; Kahneman

et al., 1993). Moreover, emotion can modulate the effects of primacy

and recency (Forgas, 2011). Such subtleties become essential when

considering the therapeutic effect of psychedelic‐assisted therapy

wherein the observed correlation between mystical experience and

clinical efficacy is likely to be conditioned by the precise sequential

dynamics and emotional content of the acute experience (Yaden &

Griffiths, 2021).

Traditional questionnaires are not designed to capture such

trajectories. While questionnaires are indispensable, validated in-

struments for human research, they inevitably compress a vast range

of psychoactivity to selected aspects of an experience (e.g. Five items

for the DEQ, 30 for the Mystical Experience Questionnaire (F. S.

Barrett et al., 2015), 85 for the Hallucinogen Rating Scale, 94 for

the 5D‐ASC, 550 for the ARCI). The complex dynamics of feelings

throughout a drug experience are reduced to low‐dimensional points
in a space spanned by the researcher's conceptual priorities, rather

than those of the subject. In contrast, subject testimonials paired

with large language models can rigorously quantify many dimensions

of subjective experience as they evolve throughout a narrative

report. Here, we demonstrate three distinct modeling techniques (i.e.

self‐supervised, transferred and inferred) that all discover over-

lapping and neurochemically‐grounded structures from subjective

testimonials of drug experiences. These structures richly depict

retrospective associations, but are not necessarily predictive or

mechanistic.

Our contributions with respect to prior work (Coyle et al., 2012;

Sanz et al., 2018; Zamberlan et al., 2018) include: (1) extending CCA

(Ballentine et al., 2022) to 52 drugs and 11,816 narratives, eli-

minating affinities whose replicability had been questioned

(Galloway, 2022) by exclusively sourcing from the Psychoactive Drug

Screening Program (PDSP) (Roth et al., 2000) and thus registering a

cacophony of pharmaceuticals into a unified, neurobiologically‐
grounded space of psychoactivity; (2) leveraging pretrained lan-

guage models and transfer‐learning we construct trajectories, rather
than static summaries, discerning subtle similarities and differences

between individual drugs and drug classes; (3) predicting de-

mographics directly from natural language demonstrating the feasi-

bility of automated bias‐reduction methods; and (4) showing that

these diverse modeling strategies all independently elucidate a

striking structure that juxtaposes the mystical, beautiful, universal

heights of psychedelia against the grim, personal and painful battles

with addiction and mental illness.

2 | METHODS

Many datasets were leveraged in this study, namely Erowid (ERO-

WID: Documenting the Complex Relationship Between Humans &

Psychoactives, 2000), receptor affinities at 61 receptor subtypes for

44 drugs from the PDSP(Besnard et al., 2012; Roth et al., 2000)

(Supplementary Figure 10), augmented with affinities for 8 phene-

thylamines from Rickli et al., 2015), RNA gene expression data for

200 brain regions from the Allen Brain Atlas (Sunkin et al., 2013), and

58K Reddit posts with 28 human‐annotated human emotions

(Demszky et al., 2020), see Supplementary Figure 20 for a schema.

The 10 pharmacologic classes and the 22 chemical classes were

retrieved from the Psychonaut Wiki (Schifano et al., 2006). The code

necessary to run these analyses are available here: https://github.

com/lucidtronix/bertowid.

Testimonials were downloaded from Erowid (www.erowid.org),

an educational resource on the effects of psychoactive substances—

both legal and illegal. The collection includes >42,000 reports in

English from >800 different drugs. Testimonials are submitted

anonymously and without financial incentive. Quality control is

conducted by trained experts with careful consideration given to

“quality, credibility, and focus on effects or outcomes” (EROWID:
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Documenting the Complex Relationship Between Humans & Psy-

choactives, 2000). Many testimonials are recounted chronologically

with sequential timestamps, while others include temporally ambig-

uous information like drug preparation details, social context and

philosophical waxings. The quality controls of Erowid and the well‐
established genre of trip reports dating back to Aldous Huxley's

Doors of Perception (Huxley, 2014) and Carlos Castañeda's Teachings

of Don Juan (Castaneda, 1998), ensures that, though they do not map

directly to time, the testimonials are consistently structured narra-

tive sequences. These narratives therefore contain information

beyond the precise chronology of the original experience.

Pharmacologic and chemical taxonomies provide the biochemical

anchor for the phenomenology described in the testimonials. Pairing

affinity data at each receptor subtype with RNA expression levels

in the cortex allows us to localize the semantic structures to spe-

cific brain regions. So, using only publicly‐available data and pre-

trained large language models we show it is possible to build

neurobiologically‐informed sequential trajectories of drug‐induced
subjective experiences.

2.1 | Data preprocessing for transformers

Scraped testimonials were parsed for meta data, drug‐masked, and
tokenized. Drug‐masking removed all occurrences of drug names in

the testimonial text, including both scientific, common, and colloquial

nomenclature as well as misspellings. See Supplementary Table 3 and

code for the full list of masked words. Models were initialized with

pretrained weights for the base BERT encoders. All initial model

weights are publicly available. Except when otherwise noted, the

base BERT model used was trained with the Stanford Sentiment

Treebank data, a corpus of natural language movie reviews with each

review annotated for sentiment valence and degree by humans

(Socher et al., 2013). The initial model architecture and weights are

available at TensorFlow Hub. The pooled output from the base BERT

model was extended with a dropout layer (Srivastava et al., 2014)

followed by a dense layer for each task (e.g. BERTiment has 28

distinct outputs–one for each binary emotion classification: present

or absent).

While testimonials vary in size, the input to BERT models is at

most 512 tokens. A sliding window inference step used all available

data by creating prediction series of varying lengths for each testi-

monial from each model. Different window sizes are compared in

Supplementary Figure 6. When the window size exceeds the testi-

monial size, the input is zero‐padded. When the window size is

smaller than the testimonial size, the testimonial is split into

contiguous blocks of text on newlines and sentence ending punctu-

ation, and the model is applied to each. In this way, a trajectory of

inferences is made. Dynamic Time Warping (DTW) quantified inter‐
trajectory distances, using an implementation from the fastdtw py-

thon package (Salvador & Chan, 2007). The Broad Institute's ML4H

tools were used for model evaluation and tensor‐mapping (Friedman
et al., 2020; Sarma et al., 2020).

2.2 | BERT‐based model encoder fine‐tuning

BERT stands for Bidirectional Encoder Representations from Trans-

formers, a type of large language model which learns an embedding

(i.e. representation) for text which can then be applied to many

different language modeling tasks, such as emotion classification and

demographic prediction. The encoder backbone of both BERTowid

and BERTiment was trained with a masked language model objective

(Devlin et al., 2018; Taylor, 1953). BERTowid and BERTiment add

output heads, which take the BERT encoder representation as input

and fine‐tune it for new tasks. The encoder backbone contains 109

million parameters. Base models are compared in Supplementary

Figure 7, showing similar performance with different pre‐training
datasets. Prior to the output layer for the fine‐tuning task, we

insert a dropout layer, see Supplementary Figure 8 (Srivastava

et al., 2014). The ADAMw (Loshchilov & Hutter, 2017) stochastic

gradient descent optimization with initial learning rate of 1e‐5 and a

batch size of 32 is used for fine‐tuning. The minimum validation loss

model is serialized for downstream inference after 16 epochs.

2.3 | Training BERTowid

The Erowid metadata, the inferred CCA weights and the receptor

affinities from PDSP provide diverse training labels for BERTowid.

Both classification (e.g. drug, tag, gender) and regression tasks (e.g.

age, affinity, CCA weights) are considered. All classification tasks are

trained to minimize a cross entropy loss, while regression models are

trained to minimize the mean squared error of their predictions.

Classification and regression with a single model requires a term to

balance between the two types of loss, but optimization was found to

be sensitive to this value, requiring careful tuning to avoid conver-

gence for only one of the loss types. To mitigate this, multitask

BERTowid is trained and serialized separately for classification and

regression. Supplementary Figure 16 compares multi‐task versus

single task models showing a relatively small cost to taking the

multitask approach. Supplementary Figure 17 shows results with

weighted loss functions to mitigate class‐imbalance. Less common

tags are in fact less informative, perhaps because they are less

rigorously or consistently attached by the Erowid moderators. Giving

these less informative labels more weight in the loss function results

in a worse model. With a window size of 64 words and all categorical

tasks, 16 epochs takes about 3 h on a NVidia V‐100 GPU.

2.4 | Training BERTiment

BERTiment is trained to predict the 28 emotion classifications

which are annotated in 58K Reddit posts in the Google Emotions

data set, which can be downloaded here. The BERTiment training

procedure has previously been described and evaluated in the

GoEmotions paper (Demszky et al., 2020). Our approach only dif-

fers in dropout rate, 0.5, learning rate, 1e‐5, and batch size, 32,
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where for consistency we used the same hyper‐parameters and

base model used to train BERTowid. We split the data 70‐20‐10
between training, testing and validation sets. The 28‐head BERTi-

ment is trained for 16 epochs which takes about 2 h on a NVidia

V‐100 GPU.

2.5 | Canonical correlation analysis

The CCA mapping between testimonials and affinities has previously

been described in detail (Ballentine et al., 2022). The approach

here extends from 27 drugs to 52, from 40 receptor subtypes to 61,

and exclusively sources affinity values from the PDSP(Besnard

et al., 2012) or Rickli et al., 2015). Briefly, CCA is applied to two

linked matrices, one contains natural language data, the other re-

ceptor affinity data. Both matrices have a row for each testimonial.

After under‐sampling from over‐represented drugs, 11,141 testi-

monials are included in the CCA analysis. The natural language matrix

is made from PCA‐reduction on bag‐of‐words representations of the
testimonials, specifically from the tf‐idf transformed word count

matrix of 20,943 words, the top 1000 principal components are kept.

So the natural language matrix has dimensions 11,141 by 1000. The

receptor affinity matrix has the 61 affinity values for the drug tiled to

link to each testimonial and so has dimensions 11,141 by 61. CCA

reveals patterns of correlation that link word usage to receptor

binding strengths. Each of these receptor‐semantic components is

composed of two poles of a weighted list of words and a weighted list

of receptors. The receptor weights for each component were mapped

to the cortex using Allen Brain Atlas receptor RNA expression

quantities measured by invasive tissue probes. The scikit‐learn
package's implementation of the CCA algorithm was used (Pedre-

gosa et al., 2011).

For each of the 52 drugs to be analyzed, we built an affinity

vector that captures the binding strengths (Ki) for 61 targets

including G protein–coupled receptors, molecular transporters, and

ion channels (Supplementary Table 4). Binding assays performed in

coordination with the PDSP followed the methodology of Glennon

et al. (53): Briefly, for each compound, a primary assay at 10 nM

concentration was performed against each receptor, transporter, or

ion channel. Those compounds that induced a “hit” of >50% inhibition

were then subjected to a secondary assay at 1, 10, 100, 1000, and

10,000 nM to determine Ki values, with the final value calculated as

the average of at least three replicated assays. Further details of how

individual assays were conducted can be found at https://pdsp.unc.

edu/databases/kidb.php.

We lastly anatomically locate the significant receptor‐experience
factors based on their gene transcription weighting of neurotrans-

mitter receptors. Publicly available human gene expression data from

six whole postmortem brains of neurotypical donors were obtained

from the Allen Human Brain Atlas (http://human.brain‐map.org). To
strengthen reproducibility and comparability, we have used the

abagen tool to map the receptor gene expression information to the

200 Schaefer‐Yeo regions (https://github.com/rmarkello/abagen).

Averages of invasive brain tissue probes were computed across all six

donors for each of the 61 receptors of interest. The factor‐specific
coexpression of receptor genes was topographically mapped to

each of the 200 target brain regions of the Schaefer‐Yeo reference

Atlas.

3 | RESULTS

We amassed a corpus of 11,816 psychoactive experiences, which

we semantically and chemically characterize with two BERT‐based
models, and one Canonical Correlation Analysis (CCA) see

Figure 1. The transfer‐learning model, BERTowid, is trained using

multi‐task, multi‐label, classification and regression directly on

Erowid testimonials and associated metadata. BERTowid is trained

to “read” a 512 token excerpt from the testimonial and predict the

associated drug, its chemical and pharmacological class, self‐
reported gender and age, 52 metadata tags, 11 canonical correla-

tion component weightings, and 30 receptor affinities. Table 1

shows taxonomy information for each drug and Table 2 shows the

testimonial counts. A second model, BERTiment, is pretrained on

a corpus from Reddit to detect 28 sentiments simultaneously

(Demszky et al., 2020). Inference on Erowid then reveals senti-

mental trajectories which we validate with a psychiatrist's adju-

dications. The predicted sentiment distributions also confirm

emotional associations recognized by drug subcultures and are

consistent with pharmacological groupings. Both models generalize

to unseen data, demonstrating how machine learning on crowd‐
sourced, noisy data can lead to diverse biochemical inferences.

Note for instance in Figure 2 how the entactogens MDA and

MDMA, the opioids and the antidepressants all track together. The

mean trajectories for a given drug reliably and reproducibly

segregate drug experiences and conform to cultural expectations of

different substances. Simultaneously, the shaded regions surround-

ing the mean trajectories indicate þ/− a standard deviation in

predicted sentiment within each drug. The large overlap in shaded

regions speaks to variation of sentiments described even for a given

drug. This is no surprise as it has long been recognized that set and

setting can dramatically impact the subjective experience with the

same psychoactive molecule. Comparison of the mean trajectories

between drugs gives a population‐level inter‐drug characterization

of a substance, while trajectories from a single testimonial can

characterize individuals by showing how their trajectory stacks up

against the population mean. The most extreme individual testi-

monial for each sentiment and semantic tag are shown in Supple-

mentary Tables 1 and 2.

Another population‐level characterization is provided by CCA,

which identified a latent structure of 11 statistically‐significant
components mapping between the semantic data and the receptor

affinity profiles in a self‐supervised fashion (Ballentine et al., 2022).

CCA is a linear model and relies on a bag‐of‐words representation of
the entirety of the testimonial text, while the transformers are deep

nonlinear neural networks which positionally‐encode a subset of text
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excerpted from the testimonials. Despite the large differences in

representation and model, BERTowid learns to infer the CCA

weightings, while many BERTiment emotion‐scapes reveal similar

drug rankings as given by CCA 0, see Figure 3.

3.1 | BERTowid

There is noise inherent in any crowd‐sourced, open dataset like

Erowid, which includes reports from many illegal substances rife with

potential impurities and misrepresentations. Nonetheless, BERTowid

shows powerful discrimination at several different granularities of

pharmacology, classifying among 52 drugs, 22 ligand chemical types,

and 10 pharmacologic classes, 30 receptor subtypes, and 11 CCA

weights. Model mistakes are consistent with expected pharmaco-

logical groupings, for example, the psychedelic chemical classes of

phenethylamines and tryptamines are more often mistaken for each

other, than for less similar chemicals (see confusion matrices in

Supplementary Figure 1). Erowid‐supplied 52 semantic tags as met-

adata, many of which are also learnable, with some of the best‐
performing being “Medical Use”, “Mystical Experiences”, “Alone”

and “Addiction Habituation”, with areas under the receiver operating

characteristic curves (ROC AUC) ranging from 0.88 to 0.95, metrics

for all tags are shown in Supplementary Figure 2 and Supplementary

Figure 18.

Conforming to its reputation as the “spirit molecule”, DMT dis-

played heightened levels of “Mystical Experiences” and, even more

dramatically, for the tag “Entities and Beings”, echoing themes un-

covered in manual DMT‐specific analyses (Lawrence et al., 2022). As
expected, the “Depression” tag highlights antidepressants, while the

“Addiction Habituation” tag is consistently elevated for the stimu-

lants cocaine and methamphetamine, see Supplementary Figure 3.

F I GUR E 1 Models. This figure illustrates the three models with a selection of key results. Left: the dominant component, CCA 0, found by

the self‐supervised learning CCA method. One extreme of CCA 0 encodes concepts of somatic suffering displayed in blue, while the other pole
encompasses visual beauty and is displayed in red. All 52 drugs included in the study are shown in (a) with the ranking along CCA 0. (b) Shows a
brain surface map of CCA 0. (c) Shows receptor clouds, note how the red visual/beauty pole is entirely serotonergic (5HT*) while the somatic/

suffering pole in blue highlights several different neurotransmitter types including opioid (MOR, DOR), GABA and acetylcholine (M1, M4).
(d) Shows word clouds with font size determined by their CCA 0 weighting. (e) Shows a surface view of CCA 0 mapping into the brain, note
how the visual pole highlights the visual cortex. Middle: results from the transfer learning model, BERTowid, which is a multi‐task classification
and regressing transformer trained directly on Erowid testimonials. All results are from test set testimonials, which were not used in training.

(f) Pearson correlation with the 11 CCA factors per‐testimonial weightings. (g) Self‐reported gender ROC curve. (h) Pearson correlation with
self‐reported age. (i) Mean precision per psychoactive class. Tiling inferences from BERT models along the narrative of the testimonials we
construct trajectories, for clarity we only show a few of 52 drugs here. (j) Trajectories for the semantic tag of “Mystical Experiences”, note the

prominence of DMT. Right: pretrained model results from BERTiment, trained on an entirely different text corpus to classify emotions.
(k) BERTiment's concordance with a clinical‐psychiatrist emotion adjudication in Erowid testimonials. (l) IMDB movie review hedonic‐tone
classifier correlation with the 28 emotions inferred on Erowid. (m) BERTiment Sadness trajectories, note how the antidepressants track with

each other and are initially quite elevated. (n) BERTiment Love trajectories, note the prominence of MDMA.
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Some testimonials include self‐reported age (3,116) and gender

(11,129) with which we trained gender‐classifying (ROC AUC 0.85)

and age‐regressing (Pearson correlation 0.56) output heads. Despite

missingness, gender class imbalance, and skew toward younger in-

dividuals, we can predict age and gender from these reports. Accu-

rate detection of sensitive features is necessary for de‐biasing
predictions through iterative removal of confounded subspaces

(Radhakrishnan et al., 2023; Ravfogel et al., 2020), allowing equitable

application of these models in healthcare settings.

Through an entirely different analytic paradigm, BERTowid br-

oadly confirms the salience and ranking of the 11 CCA components

(described below). Test set performance predicting the CCA com-

ponents drops off almost exactly with their ordering by CCA, with

(Pearson correlations ranging from 0.68 for CCA 0–0.24 for CCA 11).

Expectedly, components explaining more variance are more effec-

tively learned.

3.2 | BERTiment

All emotion predictions generalize to unseen data with ROC AUCs

ranging from 0.72 for “Realization” to 0.97 for “Love”. Further vali-

dation is provided by a hedonic tone classifying BERT model trained

with positive and negative movie reviews from IMDB (Maas

et al., 2011). The signed Pearson correlations between BERTiment

and the valence predictions neatly sorts the fine‐grained emotions by
hedonic tone. The emotions “Admiration”, “Pride”, “Approval”, and

“Love” have the highest positive correlations, while “Annoyance”,

“Nervousness”, “Embarrassment”, “Disapproval”, and “Disgust” have

the largest negative correlations. Originating from entirely different

datasets (i.e. movie reviews and Reddit posts) and evaluated on a

third orthogonal dataset (i.e. the Erowid testimonials) these models

learned mutually reinforcing representations of sentiment, albeit at

different levels of granularity, as shown in Figure 1 panel (i).

Domain expert validation for the specific context of the emotions

contained in reports of psychoactive experience was provided by a

clinical psychiatrist, who manually adjudicated 393 emotions from

256 Erowid excerpts. Concordance between the model and the

psychiatrist was within the range of inter‐human variability as re-

ported in the original GoEmotions paper (Demszky et al., 2020).

Specifically, human labeled emotions were in the top 10 BERTiment

emotions for 87% of the labels, in the top 5 for 73%, and in the top 1

for 42%, see Figure 1 panel (k).

Qualitative manual inspection confirms that the extreme (posi-

tive and negative) predictions for each sentiment were prominent

examples of the emotion (or its opposite), see Supplementary

Table 1. As expected with extreme language, profanities, capitaliza-

tion and modifiers like “very” and “so” are common. Dynamic Time

Warping (DTW) quantified the distance between the mean trajec-

tories for each emotion and each pharmacological and biochemical

class, in Figure 3 and Supplementary Figure 4 (Berndt & Clif-

ford, 1994). The DTW reveals emotional landscapes that conform to

expectations based on pharmacological classifications, molecularT
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TAB L E 2 Drug classifications and testimonial counts.

Drug Chemical class Psychoactive class N testimonials

25i‐nbome Phenethylamine Psychedelic 150

2C‐B Phenethylamine Psychedelic 204

2C‐C Phenethylamine Psychedelic 64

2C‐D Phenethylamine Psychedelic 47

2C‐E Phenethylamine Psychedelic 303

2C‐I Phenethylamine Psychedelic 391

2C‐P Phenethylamine Psychedelic 58

2c‐t‐2 Phenethylamine Psychedelic 118

2c‐t‐4 Phenethylamine Psychedelic 16

2c‐t‐7 Phenethylamine Psychedelic 173

5‐Meo‐dmt Tryptamine Psychedelic 281

5‐Meo‐dipt Tryptamine Psychedelic 208

5‐Meo‐mipt Tryptamine Psychedelic 71

5‐Meo‐tmt Tryptamine Psychedelic 109

DMT Tryptamine Psychedelic 530

DOB Amphetamine Psychedelic 45

DOI Amphetamine Psychedelic 34

DOM Amphetamine Psychedelic 36

DPT Tryptamine Psychedelic 148

DXM Morphinan Dissociative 457

DIPT Tryptamine Psychedelic 54

Ketamine Arylcyclohexylamine Dissociative 404

LSD Lysergamide Psychedelic 1177

MDA Amphetamine Entactogen 79

MDMA Phenethylamine Entactogen 1154

Mescaline Phenethylamine Psychedelic 136

PCP Arylcyclohexylamine Dissociative 76

Psilocin Tryptamine Psychedelic 597

Salvia Salvinorin Hallucinogen 199

TMA‐2 Amphetamine Psychedelic 24

Alprazolam Benzodiazepine Depressant 120

Amphetamine Phenethylamine Stimulant 385

Aripiprazole Piperazine Antipsychotic 26

Bupropion Aminoketone Antidepressant 86

Cocaine Tropane_alkaloid Stimulant 568

Diphenhydramine Ethanolamine Deliriant 285

Haloperidol Butyrophenone Antipsychotic 12

Hydrocodone Morphinan Opioid 178

Hydromorphone Morphinan Opioid 46

Ibogaine Tryptamine Psychedelic 80

(Continues)
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structure, questionnaires, and anecdotal reports of drug phenome-

nology (Preller & Vollenweider, 2018; Studerus et al., 2010). The

DTW matrices are skew‐symmetric with the sign indicating which

drug had higher mean predicted emotion. Figure 4 provides a

comprehensive view of the emotional content as determined by

BERTiment in the Erowid dataset. Ordered by hedonic‐tone, the
most negative sentiments are associated with antidepressants and

antipsychotics, drugs like opioids and deliriants with both clinical‐use
and abuse potential are in the middle, and at the positive extreme

are psychedelics and entactogens. The association of psychiatric

medications with negative emotions is confounded by ascertainment

bias of those who seek out these medications, and does not neces-

sarily reflect efficacy.

Zooming in to consider single molecules, MDMA is characterized

by both BERTowid and BERTiment in Figure 5. The trajectory of

“Love” during MDMA testimonials starts high and ends higher–fitting

for a molecule colloquially known as the “love‐drug”. This arc is

clearly distinguished from all other drugs, though closely tracked by

the related entactogen, MDA. Supplementary Figure 3 shows the

“Sadness” trajectories of stimulants (cocaine, amphetamine, and

methamphetamine) are tightly coupled and rise gradually over the

course of the testimonial, while antidepressants (paroxetine, ven-

lafaxine, and sertraline) start much higher than the stimulants but

gradually fall. In contrast, both stimulants and antidepressants start

with similar “Anger” levels, but over the course of the report meth-

amphetamine and cocaine rise while antidepressants increase

somewhat less.

The emotions “Realization”, “Curiosity”, “Confusion”, “Surprise”,

and “Amusement” are consistently elevated in subjective testimonials

of hallucinogens and psychedelics as compared to other drugs, most

notably the opioids. This constellation of emotions provides

discernment within the broad, overlapping classes of hallucinogens

and psychedelics as shown in Figure 6. For example, Salvia and DMT

are both high in “Realization”, and “Curiosity”, however Salvia trig-

gers more “Confusion”, while DMT generates more “Surprise”. PCP is

high in “Confusion” and “Amusement”, but lower in “Realization”,

“Surprise” and “Curiosity”. The opioids are consistently lower in all of

these emotions. “Relief” provides an interesting counterpoint, as it is

higher in opioids than in psychedelics, as expected for drugs widely

prescribed for their pain‐relieving effects.
Notably, not every emotion clearly distinguishes different drugs.

“Neutral” and “Optimism” trajectories are conserved across phar-

macological classes. “Neutral” decreases as the testimonial proceeds,

while “Optimism” increases dramatically at the narrative's end, see

Supplementary Figure 5. As if the peak‐end rule is a self‐fulfilling
prophecy, testimonials for all drugs end on an optimistic note. The

reduction in “Neutral” over the course of a trip is expected as a drug's

effects reveal themselves to the user. Notably, a similar reduction in

neutral sentiment over the course of the narrative was shown in

IMDB movie reviews (Socher et al., 2013).

3.3 | Canonical correlation analysis

We uncovered 11 discrete components that integrate subjective

descriptions with the neurotransmitter affinity fingerprint of each

drug. These 11 components were statistically‐significant after

correction for multiple comparisons for all estimated CCA factors

(P < 0.05, family‐wise error‐corrected). The explained joint correla-

tion metric, ρ, ranged from 0.86 for CCA 0–0.57 for CCA 10, indi-

cating strong correlation for each factor.

The dominant factor, CCA 0, grouped perceptual phenomena

including visuals, colors, patterns, beautiful, light and eyes with appar-

ently transcendental and abstract terms including reality, universe,

everything, ego, consciousness, and world. As a gestalt, these terms may

be described as “visual‐universal”. “Visual‐universal” terms were

linked to the drugs DMT, LSD, and psilocin, primarily serotonergic

receptors 5‐HT2A, 5‐HT1A, 5‐HT2C, and localized to the medial

prefrontal cortex. The opposite extreme of CCA 0 flagged words

suggestive of painful, quotidian ennui, which we summarize as

T A B L E 2 (Continued)

Drug Chemical class Psychoactive class N testimonials

Methadone Diphenylpropylamine Opioid 110

Methamphetamine Amphetamine Stimulant 419

Mirtazapine Piperazinoazepine Deliriant 39

Morphine Morphinan Opioid 105

Olanzapine Thienobenzodiazepine Antipsychotic 46

Oxycodone Morphinan Opioid 237

Paroxetine Piperidine Antidepressant 77

Quetiapine Dibenzothiazepine Antipsychotic 146

Risperidone Benzisoxazole Antipsychotic 31

Sertraline SSRI Antidepressant 48

THC Cannabinoid Hallucinogen 1348

Venlafaxine SNRI Antidepressant 81
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F I GUR E 3 Dynamic Time Warp Distances Between 17 Emotions Supports CCA 0. CCA 0, the dominant component from CCA, revealed a

ranking of the 52 drugs (a) whose semantic axis, shown by the words at each extreme in (b) were concordant with many emotion DTW
matrices from BERTiment (c). Note how all 12 of the DTW matrices in the top half of the figure have bluish upper diagonals and reddish lower
diagonals, while the opposite pattern was found for the 5 emotions in the lower half of the image.

F I GUR E 2 Trajectories and Drug Taxonomies. Left: BERTiment trajectories for the emotion “Admiration” at the pharmacological level (a),

chemical level (b) and individual drug level (c), see Table 2 for the full drug taxonomy. Note that for clarity we have selected only 12
representative drugs of the 52 included, see other figures for comparisons involving all drugs. Shaded regions indicated þ/− intra‐drug
standard deviation. Right: BERTowid trajectories for each of the 3 different levels of drug classification (from the left panel) on metadata tags

“Mystical Experiences” (d), “Addiction Habituation” (e), “Depression” (f), and “Rave Dance Event” (g). Note the concordance between the
entactogens MDA and MDMA and the antidepressants sertraline and venlafaxine.
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F I GUR E 5 MDMA is Singular. (a) The BERTowid tag predictions for MDMA compared to all other drugs, ordered from most associated
(blue bars) to least associated (red bars). (b) BERTiment sentiment averages compared all other drugs, ordered by the hedonic tone spectrum,
with higher values in blue/green, lower values red/yellow. (c) Trajectory of love compared against all drugs shows that MDMA is the dominant

love drug. Sentiment trajectories for “Joy” (d), and “Disgust” (e) for MDMA along with representative drugs from the main pharmacologic
classes are shown.

F I GUR E 4 Emotionscapes. The relative ranking amongst 10 pharmacological classes for BERTiment predictions for all 28 sentiments. The
28 sentiments are ordered by the hedonic tone spectrum derived from correlation with the IMDB movie review positivity classifier. Note that

the drug classes are ordered from left to right according to the prevalence of negative versus positive overall hedonic tone, and that as
expected antidepressants show the least hedonic tone and entactogens show the most.
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“somatic‐suffering”: depression, pain, addiction, sleep, awake, daily,

weeks, months, work, and anxiety. The somatic‐suffering pole was

linked to cocaine, amphetamine, methamphetamine, and oxycodone,

the receptors MOR, DOR, NET, and DAT, and localized to the pos-

terior cingulate cortex and the inferior parietal lobule.

All components are described in detail in Supplementary Figure:

CCA 0 ‐ Supplementary Figure: CCA 10. Although not imposed by

our analytic model, the cortical mappings of factors often were

spatially contiguous with smooth transitions between neighboring

regions and bilaterally symmetric between the left and right hemi-

spheres. Additionally, we show that these components are robust to

demographic variation in sex and age by showing robust positive

correlations between components learned on different subsets of the

testimonials, as shown in Supplementary Figure 19.

3.4 | Convergence between BERTiment, BERTowid,
and CCA components

Remarkably, the three distinct ML approaches elucidated similar

findings. MDMA was found to elicit a unambiguously positive palette

of affect, which is of particular interest given its apparent efficacy in

PTSD treatment (Mitchell et al., 2021). MDMA was ranked highest

among all 52 compounds for “Admiration”, “Pride”, “Approval”,

“Love”, “Excitement”, and “Gratitude”. BERTowid tag weightings for

entactogens (Supplementary Figures 11 and 12) describe festivity

and dancing, but also relational, and ebullient phenomena (e.g.

“Glowing”). Similarly, component CCA 5 associated MDMA with

celebration and emotional‐extremes.
Results also show important distinctions amongst psychedelic

subclasses. In particular, the tryptamines exhibit elevated levels of

“Curiosity”, “Surprise”, and “Realization”, while phenethylamines

highlight relatively higher levels of “Admiration”, “Excitement”, and

“Gratitude”. Tryptamines–especially powerful DMT and 5‐MeO‐
DMT–had higher “Mystical Experiences” tag weightings than phe-

nethylamines mescaline and 2‐CE. Interestingly, the chemically

distinct diterpenoid compound Salvia shared with these prototypical

tryptamines high levels of these emotions and tags though it was also

higher on “Confusion” than the tryptamines.

Drug factorization in CCA 0 aggregated stimulants (including

MDMA) and psychiatric medications into one pole, associating them

with phenomena relating to suffering, addiction, and the mundane.

Through an entirely separate analysis, BERTiment DTW demon-

strated these drugs all ranked highest for emotions compatible with

this theme such as “Disappointment”, “Grief”, “Annoyance”, “Disap-

proval”, “Disgust”, “Sadness”, and “Anger”. The opposite pole grouped

psychedelic and hallucinogenic drugs together with terms apparently

highlighting a theme of abstract, mystical and beatific phenomena.

BERTiment found these drugs to have much higher scores for “Cu-

riosity”, “Admiration”, “Amusement”, “Surprise”, and “Realization”.

This dichotomy between the gloomy, prosaic, quotidian aspects of

human sentiment and the more abstract, expansive, and creative

F I GUR E 6 Psychedelics are Curious. (a) the three major psychedelic chemical classes are shown with BERTiment's relative ranking of each
sentiment, as compared to the 22 classes included in the study. (b) BERTiment sentiment trajectories for a subset of phenethylamines,
lysergamide, and tryptamines, and for comparison, opioids and ketamine are also shown. Note how, for tryptamines in particular, the

weightings for “Surprise” and “Curiosity” are far greater than they are for MDMA. Whereas “Relief” is much higher for opioids than for any of
the psychedelics.
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aspects of human potential was the most explanatory distinction in

this large corpus of drugs, and the majority of the 28 sentiments

considered fit into the same general schema.

The tables of extreme predictions from our models (Supple-

mentary Tables 1 & 2) make clear that our models learn both the

positive labels and their opposites. Similarly, Word2Vec demon-

strated that directions, not just points, are meaningfully encoded in

latent spaces of natural language (e.g. King‐Queen = Man‐Woman)

(Mikolov et al., 2013). Likewise, transformations on our models'

representations could encode desired emotional trajectories, for

instance separating feelings of confusion from love, or fear from

mystical experiences, etc.

4 | DISCUSSION

Shallow CCA and deep transformers, supervised or self‐supervised,
we have trained models which represent diverse drug experiences in

a unified, biochemically‐informed, sequentially‐sensitive manner.

Derived directly from natural language, these representations

contain information like the intensity of mystical experience and the

depth of joy, anger, and grief. Sequentially applying these models on

retrospective reports creates evocative narrative trajectories, which

reflect pharmacological distinctions and conform to expectations of

subjective effects reported by psychonauts and researchers. Our

findings dovetail with prior efforts to use natural language processing

tools to analyze the Erowid testimonial database. For example, one

recent study (Hase et al., 2022) also found that antidepressants were

associated with words denoting negative affect and less with mystical

phenomena–which they also partly attribute to ascertainment bias of

depressed subjects. A pioneering study from 2012 also noted simi-

larity between pharmacologically‐distinct, short‐acting drugs like

Salvia and DMT (Coyle et al., 2012), while our analysis further

distinguished between DMT, linked with higher levels of “Surprise”,

and Salvia which associated more with “Confusion”.

The peak‐end rule inspired us to look for trajectories of senti-

ment, stemming from the counterintuitive finding that there are

times when more pain is preferred to less (Kahneman et al., 1993). A

rule is not a law, and subtleties like whether pleasure is increasing or

decreasing when an experience ends, can be even more important

(Mah & Bernstein, 2019). The trajectories produced by BERTowid

and BERTiment capture other trajectory shapes which may influence

memory consolidation. Combined with clinical outcome data in a

prospective manner, this method could potentially help to identify

temporally‐mediated “rules” correlating clinical efficacy with specific

trajectories of experience. There may be a vast repertoire of drug‐
induced experiential trajectories of clinical import, which are not

yet described.

While the trajectories we constructed unfold from the narrative

language in the trip report, the methods presented naturally apply to

other streams of phenomenological and neurochemical data. Mo-

dalities as diverse as EEG, ECG, fMRI, and other biometrics are

amenable to trajectory construction, simply by replacing the BERT

models with appropriately pretrained encoders (e.g. a 1D CNN for

EEGs or ECGs (Khurshid et al., 2022; Liu et al., 2021)). Excitingly,

such modalities can be sampled uniformly in time, and independently

from the subject's recollection, mitigating uncertainties inherent in

self‐reported datasets like Erowid about dosage, chronology, and

drugs' impact on memory (Doss et al., 2018, 2022). Likely the best

representations of acute drug states will be built by multimodally

combining subjective and biometric data since both physiological

responses and the qualia of experience are critical to understand

psychoactive effects.
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