Abstract
Background:
Recent interest in the potential therapeutic effects of psychedelics has led to investigations into their influence on molecular signaling pathways within the brain.
Aims:
Integrated review and analysis of different studies in this field.
Methods:
A systematic search was conducted across international databases including Embase, Scopus, Web of Science, and PubMed from inception to 9 July 2023. Eligibility criteria encompassed published and peer-reviewed studies evaluating changes in brain-derived neurotrophic factor (BDNF) levels after psychedelic consumption.
Outcomes:
A total of nine studies were included in our study. The meta-analysis demonstrated significantly higher BDNF levels in psychedelic consumers compared to healthy controls, with a pooled standardized mean difference of 0.26 (95% CI: 0.10–0.42, I2 = 38.51%, p < 0.001). Leave-one-out analysis indicated robustness in results upon removal of individual psychedelics. No significant publication bias was observed. The results highlight the potential influence of psychedelics on neuroplasticity by altering BDNF levels.
Conclusions:
More precisely, the documented rise in BDNF levels indicates a neurobiological mechanism by which psychedelics could enhance synaptic plasticity and foster the growth of neurons. Given the limited data available on this topic, the conclusions remain uncertain. Consequently, we highly recommend additional research with more extensive sample sizes to yield more reliable evidence in this field.
Link to article: https://doi.org/10.1177/02698811241234247